Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Chisopanins A-K, 11 new protolimonoids from Chisocheton paniculatus and their anti-inflammatory activities

Ming-Hua Yang, Jun-Song Wang, Jian-Guang Luo, Xiao-Bing Wang, Ling-Yi Kong*

Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China

ARTICLE INFO

Article history: Received 27 November 2010 Revised 4 January 2011 Accepted 5 January 2011 Available online 11 January 2011

Keywords: Chisocheton paniculatus Protolimonoids Anti-inflammatory activities

ABSTRACT

Eleven new protolimonoids, chisopanins A-K (1-11), were isolated from the twigs of Chisocheton paniculatus, as well as thirteen known (12-24) protolimonoids. The structures were elucidated on the basis of spectroscopic analysis, X-ray crystallographic analysis, and chemical methods. Chisopanins A and B (1 and 2) possessing uncommon hemiketal tetrahydropyran ring at C-17 showed the most potent inhibitory activities on lipopolysaccharide-stimulated inflammation factor-release with IC50 values at 5.4 and 7.9 μ M for NO, and at 26.9 and 30.7 μ M for TNF- α , respectively. In addition, compounds 5–7, 9, 12, 13, and **20** were potent to inhibit NO production with IC_{50} value lower than 10 μ M.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Protolimonoids are precursors of limonoids, mainly distributed in the family Meliaceae and Rutaceae, and some of which exhibited antifeedant, antimalarial and cytotoxic activities.¹⁻⁴ Recently two protolimonoids have been reported with marked anti-inflammatory activities.^{5,6} They significantly inhibited the production and gene expression of pro-inflammatory mediators in vitro and also showed activities in animal tests in vivo, which combined with the fact that a large number of other triterpenoids were principles responsible for anti-inflammatory effects in plants,⁷ prompted us to investigate the anti-inflammatory activities of protolimonoids.

In our initial evaluation of the anti-inflammatory activities of Chisocheton paniculatus Hiern (Meliaceae), a plant abound with protolimonoids, 8,9 both the extract of its twigs (CPA) and subsequent CHCl₃ partitioned phase (CPC) significantly suppressed edema formation in carrageenan-induced mouse paw edema model of inflammation (Fig. 1). Further chemical investigation on the CHCl₃ partitioned phase resulted in the isolation of 11 new (chisopanins A-K, 1-11) and 13 known (12-24) protolimonoids along with 7 new C-seco-type tetranortriterpenoids, 10 which were reported previously. In this study, we describe the isolation and structural elucidation of these protolimonoids from C. paniculatus as well as their effects on the inflammation factor-release (NO and TNF- α).

CPC (100 mg/kg) - ← CPC (200 mg/kg)

2. Results and discussion

control group.

6

2.1. Identification and structure determination

The CHCl₃ partitioned phase of the twigs of C. paniculatus was subjected to column chromatography on silica gel, ODS, and

^{*} Corresponding author. Tel./fax: +86 25 83271405. E-mail address: cpu_lykong@126.com (L.-Y. Kong).

Sephadex LH-20, as well as preparative HPLC to yield 11 new (1–11) and 13 known (12–24) protolimonoids (Fig. 2). Their structures were determined by 1D and 2D NMR experiments, X-ray crystallographic analysis, and chemical methods.

Chisopanin A (1) was isolated as colorless crystals (MeOH/ $CHCl_3$). Its molecular formula of $C_{34}H_{54}O_8$ was determined by the quasi-molecular ion peak at 613.3731 [M+Na]+ (calcd for C₃₄H₅₄O₈Na, 613.3711) in HRESIMS. Its IR spectrum revealed absorption bands for hydroxyls (3451 m⁻¹), carbonyl groups (1730 cm^{-1}) , and a double bond (1640 cm^{-1}) . The ¹H NMR spectrum (Table 1) showed seven tertiary methyl groups ($\delta_{\rm H}$ 0.77, 0.93, 0.97, 1.13, 1.14, 1.22, and 1.33, each 3H, s), two acetoxyl groups (δ_H 1.97, 2.07, each 3H, s), one olefinic proton (δ_H 5.23), and five oxygenated protons (δ_H 3.58, 3.84, 3.88, 4.64, and 5.14). In addition to two acetoxyl groups, the ¹³C NMR spectra (Table 2) showed the presences of seven methyls, eight methylenes (one oxygenated), eight methines (three oxygenated, one olefinic), seven quaternary carbons (one hemiketal and one oxygenated). These data indicated that 1 was an apo-tirucallol protolimonoids with a modified eight-carbon side chain, 11 which was determined by the HMBC experiment. The HMBC correlations (Fig. 3) originated from oxymethylene protons [δ_H 3.84, 3.58 (H-21)] to a hemiketal carbon [δ_C 96.5 (C-24)] revealed the existence of an ether bridge between C-21 and C-24 of the side chain, forming a tetrahydropyrane ring. The cross peaks from two methyl protons Me-26 ($\delta_{\rm H}$ 1.33, s) and Me-27 ($\delta_{\rm H}$ 1.22, s) to the hemiketal carbon (C-24) also confirmed the connection of a 2-hydroxyisopropyl group at C-24. In combination with the chemical shift, the HMBC correlations from H-23 ($\delta_{\rm H}$ 3.88, t, 2.5) to C-24 ($\delta_{\rm C}$ 96.5) and C-22 ($\delta_{\rm C}$ 34.3) placed a hydroxyl at C-23. Thus, the side chain was assigned as 21,24-epoxy-23,24,25-triol. Moreover, two acetyl groups were placed at C-3 and C-7 due to the observed HMBC cross peaks from H-3 ($\delta_{\rm H}$ 4.64, t, 2.5) and H-7 ($\delta_{\rm H}$ 5.14, t, 2.0) to the acetyl carbonyl at $\delta_{\rm C}$ 172.5 and 172.0, respectively. Extensive analysis of its HMBC spectrum further confirmed the planar structure.

The ROESY experiment of **1** (Fig. 4) gave the relative configuration of the tetracyclic core as shown in Fig. 2. ROESY cross peaks of Me-29/H-3 and Me-30/H-7 also revealed a β -orientation for H-3 and H-7. The characteristic coupling constants between H-20 and H-21 ($J_{21a,20}$ = 11.5 Hz, $J_{21b,20}$ = 4.6 Hz) revealed axial orientations for H-20 and H-21a. The ROESY correlations between H-21 α ($\delta_{\rm H}$ 3.84, dd, 11.0, 4.6) with Me-18 ($\delta_{\rm H}$ 1.13, s) and H-11 α ($\delta_{\rm H}$ 1.75, m), and between H-21 β ($\delta_{\rm H}$ 3.58, dd, 11.0, 11.5) with H-17 ($\delta_{\rm H}$ 1.35, m) were observed, which was possible only when **1** had C-20S configuration (apo-tirucallol skeleton) according to a molecular model. The assignment of C-23R was made by NOE correlations of H-23/H-21 β . Since the configuration of C-24 was uncertain, a single-crystal X-ray diffraction analysis (Fig. 5) was performed

Figure 2. Chemical structures of compounds 1–24, 3a, and 9a.

Table 1 ¹H NMR spectroscopic data for compounds **1–12** (*J* in Hz within parentheses)

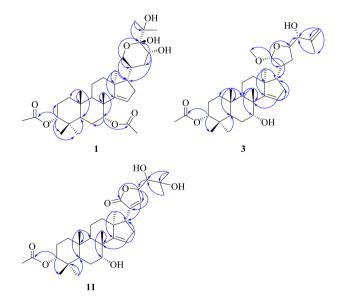
No.	1 ^a	2 ^a	3 ^b	4 ^b	5 ^b	6 ^b	7 ^b	8 ^b	9 ^b	10 ^b	11 ^b	12 ^{b,c}
1a	1.45 m	1.45 m	1.83 m	1.84 m	1.36 m	1.39 m	1.37 m	1.35 m		1.36 m		1.36 m
1b	1.81 m	1.83 m	1.44 m	1.46 m	1.25 m	1.25 m	1.28 m	1.23 m	1.26 m	1.26 m	1.24 m	1.23 m
2a	2.17 m	1.95 m	1.88 m	1.90 m	1.90 m	1.89 m	1.90 m	1.90 m	1.87 m	1.87 m	1.87 m	1.89 m
2b	1.60 m	1.58 m	1.59 m	1.60 m	1.58 m	1.60 m	1.60 m	1.59 m	1.59 m	1.58 m	1.57 m	1.59 m
3	4.64 (t, 2.5)	4.63 br s	4.64 s	4.66	4.65 (d, 2.7)	4.65 (d, 2.6)	4.65 br s	4.65 br s	4.65	4.66 br	4.66 s	4.64
				(t, 2.6)					(t, 3.0)	S		(dd, 2.6, 2.8)
5	2.08 m	2.04 m	2.05 m	2.03 m	2.02 m	2.01 m	1.95 m	1.95 m	1.95 m	1.98 m	1.95 m	1.98 m
6a	1.86 m	1.83 m	1.72 m	1.74 m	1.76 m	1.74 m	1.76 m	1.75 m	1.73 m	1.75 m	1.75 m	1.70 m
6b	1.70 m	1.70 m	1.69 m		1.70 m	1.70 m	1.72 m	1.71 m				1.73 m
7	5.14 (t, 2.0)	3.93 br s	3.90 br s	3.91 s	3.91 (d, 2.7)	3.91 (d, 2.7)	3.92 s	3.91 br s	3.91 br	3.91 br	3.95 s	3.91
									S	S		(dd, 2.5, 2.6)
9	1.88 m	2.08 m	1.95 m	1.97 m	2.06 m	1.99 m	2.03 m	1.96 m	2.03 m	2.02 m	2.01 m	2.02 m
	1.75 m	1.74 m	1.72 m	1.72 m	1.73 m	1.70 m	1.70 m	1.70 m		1.70 m		1.72 m
	1.53 m	1.52 m	1.49 m	1.53 m	1.50 m	1.51 m	1.52 m	1.49 m		1.49 m		1.51 m
	1.47 m	1.39 m	1.91 m	1.93 m	1.83 m	1.60 m	1.80 m	1.62 m		1.58 m		1.79 m
	1.29 m	1.29 m	1.38 m	1.36 m	1.43 m	1.51 m	1.46 m	1.51 m		1.52 m		1.45 m
	5.23 (t, 3.5)			5.45		5.51 (d, 2.1)		5.48 br s	5.45		5.54 (d, 2.3)	5.44 m
	0.23 (1, 3.5)	0.11 (1, 2.0)	5111515	(d, 2.2)	5.15 (4, 2.5)	0.01 (4, 2.11)	0.10 (0, 2.1)	0.10 0. 0	(t, 2.4)	5117 5	0.01 (4, 2.0)	
16a	1.96 m	2.11 m	2.16 m	2.18 m	2.18 (ddd, 4.7,	2 15 m	2.22 m	2.19 m		2.15 m	2 69	2.22
rou	1.50 111	2.11 111	2.10 111	2.10 111	8.2, 12.1)	2.13 111	2.22 111	2.13 111	2.20 111	2.13 111	(dd, 11.7, 15.0)	
					0.2, 12.1)						(dd, 11.7, 15.0)	7.5,15.5)
16b	2.17 m	2.23 m	2.06 m	2.10 m	2.15 m	2.13 m	2.13 m	2.15 m	2.12 m		2.38 (ddd, 6.9,	
100	2.17 111	2.23 111	2.00 111	2.10 111	2.15 111	2.13 111	2.13 111	2.13 111	2,12 111		10.5, 15.1)	2.13 111
17	1.35 m	1.36 m	1.70 m	1.69 m	1.68 m	1.98 m	1.72 m	2.04 m	1 70 m	1.98 m		1.73 m
17	1.55 111	1.50 111	1.70 111	1.03 111	1.00 111	1.30 111	1.72 111	2.04 111	1.70 111	1.30 111	(dd, 7.2, 10.7)	1.75 111
18	1.13 s	1.12 s	1.07 s	1.10 s	1.09 s	1.04 s	1.11 s	1.05 s	1 10 c	1.05 s		1.08 s
19	0.97 s	0.95 s	0.90 s	0.91 s	0.91 s	0.91 s	0.92 s	0.92 s		0.91 s		0.90 s
				0.91 s 2.40 m		2.16 m				2.18 m	0.92 \$	
	2.25 m	2.26 m	2.37 m		2.34 m		2.36 m	2.19 m				2.34 m
21d	3.58 (dd,	3.58 (dd,	4.82 m	4.93	4.80 (d, 3.7)	4.76 (d, 4.3)	4.90 (a, 4.2)	4.87 (d, 4.3)	4.80	4.75		4.79 (d, 3.7)
241	11.0, 11.5)			(d, 3.6)					(a, 3.6)	(d, 4.3)		
21D	3.84 (dd,	3.84 (dd,										
22.		11.0 4.5)	1.24	1.20	1.00	1.02	1.00	1.00	1.07	1.02	7.17 -	1.02
	1.67 m	1.70 m	1.34 m	1.36 m	1.96 m	1.93 m	1.90 m	1.98 m		1.92 m	7.17 S	1.93 m
22b	2.00 (+ 2.5)	2.00 (+ 2.5)	1.25 m	1.24 m	1.63 m	1.81 m	1.70 m	1.87 m		1.83 m	5.22 -	1.81 m
23	3.88 (t, 2.5)	3.88 (t, 2.5)	4.07 m	4.10 m	4.22 (ddd, 2.3,		4.29 (dd, 4.2	4.44 (ddd, 1.9,	4.23 m	4.48 m	5.22 S	4.25 (ddd, 1.7
2.4			2.02.1	2.00	4.8, 7.0)	2.3, 6.8, 8.4)		7.2, 9.2)	2.20	2.27	0.54(1.05)	5.0, 10.7)
24			3.92 br s	3.90	3.37 (d, 2.3)	3.26 (d, 2.3)	3.25 s	3.17 (d, 2.0)	3.38	3.27	3.54 (d, 2.5)	3.24
				(d, 2.5)						(d, 2.7)		(dd, 1.7, 9.7)
26	1.33 s	1.33 s		5.00 br s;	1.24 s	1.25 s	1.30 s	1.26 s	1.25 s	1.25 s	1.33 s	1.26 s
			4.89 br s	4.90 br s								
	1.22 s	1.22 s	1.76 s	1.77 s	1.15 s	1.18 s	1.27 s	1.26 s		1.19 s		1.29 s
28	0.77 s	0.84 s	0.85 s	0.86 s	0.86 s	0.86 s	0.87 s	0.86 s		0.86 s		0.85 s
29	0.93 s	0.93 s	0.89 s	0.90 s	0.89 s	0.89 s	0.90 s	0.90 s		0.90 s		0.89 s
	1.14 s	1.08 s	1.05 s	1.07 s	1.06 s	1.06 s	1.07 s	1.08 s		1.06 s		1.05 s
OAc	1.97 s; 2.07	2.06 s	2.06 s	2.07 s	2.11 s	2.07 s	2.08 s	2.07 s	2.10 s	2.07 s	2.07 s	2.07 s
	S											
OMe	:		3.36 s		3.23 s; 3.36 s	3.25 s, 3.37 s			3.37 s			3.35 s
OEt				3.78 m;				3.75 m; 3.42 m		3.45		
				3.45 m			1.23 (t, 7.2)	1.23 (t, 7.2)	(2H	(2H		
				1.22 (t,					m);	m);		
				7.1)					1.15 (t,	1.14 (t,		
									6.6)	6.9)		

^a Measured at 500 MHz in CD₃OD.

and demonstrated the 24*S* configuration and the proposed structure of **1**. So the structure of **1** was thus elucidated as 3α , 7α -diacet-oxyl- 17α -20S-21,24-epoxyapotirucall-14-ene-23R,24S,25-trisol.

Chisopanin B (**2**) had the molecular formula $C_{32}H_{52}O_7$ as established from its positive HRESIMS (m/z 571.3591 [M+Na]⁺, calcd for $C_{32}H_{52}O_7$ Na, 571.3605), 42 mass units less than **1**. 1 H and 13 C NMR spectroscopic data (Tables 1 and 2) of **2** were very similar to those of **1**, except for the existence of only one acetoxyl group. In comparison with **1**, the H-7 signal was shifted upfield by 1.21, suggesting the absence of an acetoxyl at C-7 in **2**. The observed HMBC correlation between H-3 and the acetoxyl carbonyl at δ_C 172.7 placed this acetoxyl at C-3. ROESY experiments indicated that the relative stereochemistry and configuration of **2** was the same as that of **1**. Therefore, **2** was determined as 3α -acetoxyl- 17α -20S-21,24-epoxyapotirucall-14-ene- 7α ,23R,24S,25-tetraol.

Chisopanin C (3) was isolated as a white, amorphous powder. The molecular formula of $C_{33}H_{52}O_6$ was established by a peak at m/z 567.3668 for the [M+Na]* ion (calcd for $C_{33}H_{52}O_6$ Na, 567.3656) in HRESIMS. The IR spectrum showed absorbance bands at 3457 cm⁻¹ (hydroxy groups) and 1727 cm⁻¹ (carbonyl group). The ¹H NMR spectrum (Table 1) showed six tertiary methyl groups ($\delta_{\rm H}$ 0.85, 0.89, 0.90, 1.05, 1.07, and 1.76, each 3H, s), one acetoxyl ($\delta_{\rm H}$ 2.06, 3H, s), one methoxyl ($\delta_{\rm H}$ 3.36, 3H, s), three olefinic protons ($\delta_{\rm H}$ 4.89, 4.99, 5.44, each 1H, br s), and five protons ($\delta_{\rm H}$ 3.90, 3.92, 4.07, 4.64, 4.82) bonded to oxygenated carbons. A total of 33 carbon resonances were observed in the ¹³C NMR spectrum (Table 2). Carbon resonances for one trisubstituted double bond, one terminal double bond, six methyls, seven sp³ methylenes, nine sp³ methines, and four sp³ quaternary carbons were assigned by ¹³C NMR and HSQC experiments, in addition to those for the


^b Measured at 500 MHz in CDCl₃.

^c Literature data, see Ref. 7.

Table 2 ¹³C NMR spectroscopic data for compounds **1–12**

No.	1 ^a	2 ^a	3 ^b	4 ^b	5 ^b	6 ^b	7 ^b	8 ^b	9 ^b	10 ^b	11 ^b	12 ^{b,c}
1	35.9	35.7	32.8	32.9	33.2	33.3	33.2	33.2	33.1	33.2	33.2	33.1
2	23.7	23.8	22.7	22.8	22.8	22.8	22.7	22.8	22.8	23.3	22.8	22.7
3	79.6	79.8	78.0	78.1	78.1	78.1	78.0	78.1	78.1	78.1	78.1	78.1
4	37.2	37.4	36.1	36.2	36.2	36.2	36.1	36.2	36.1	36.2	36.2	36.1
5	44.8	43.2	41.6	41.8	41.7	41.7	41.8	41.9	41.8	41.8	41.9	41.8
6	24.3	25.4	23.6	23.6	23.6	23.6	23.5	23.6	23.5	23.6	23.7	23.5
7	77.3	73.9	72.2	72.2	72.2	72.2	72.1	72.2	72.1	72.2	72.3	72.1
8	43.5	45.2	44.4	44.5	44.5	44.5	44.4	44.5	44.4	44.4	44.7	44.4
9	44.4	43.0	41.8	41.6	41.9	41.9	41.6	41.6	41.6	41.6	41.6	41.6
10	38.6	38.7	37.6	37.6	37.6	37.6	37.6	37.7	37.6	37.6	37.7	37.5
11	17.6	17.6	16.3	16.3	16.3	16.4	16.3	16.4	16.3	16.4	16.3	16.2
12	34.6	34.5	34.0	34.2	32.7	32.9	32.7	32.9	32.6	32.9	32.5	32.7
13	47.9	47.9	47.0	47.1	47.0	46.7	47.0	46.7	47.0	46.6	47.8	46.9
14	161.4	162.4	162.5	162.5	162.5	162.1	162.3	162.1	162.4	162.1	161.7	162.3
15	119.5	120.6	119.1	119.2	119.3	119.7	119.3	119.7	119.2	119.7	119.3	119.2
16	34.8	34.9	34.7	34.8	34.7	35.0	34.8	35.0	34.7	34.9	33.7	34.7
17	58.6	58.6	57.6	57.8	57.7	52.5	57.5	52.3	57.6	52.5	50.8	57.4
18	19.8	19.2	19.4	19.4	19.9	19.9	19.3	20.0	19.4	19.9	20.4	19.4
19	15.9	15.8	15.1	15.2	15.2	15.2	15.2	14.2	15.2	15.1	15.2	15.1
20	31.1	31.0	46.7	46.9	46.2	44.8	45.9	44.6	46.2	44.8	134.3	45.8
21	66.3	66.3	109.2	108.1	109.3	104.6	108.4	103.4	109.2	104.5	173.3	109.5
22	34.3	34.3	33.2	33.2	35.5	32.4	33.8	31.6	35.6	32.4	148.9	33.7
23	69.1	69.1	78.8	78.8	75.1	77.8	76.8	78.6	75.2	77.9	81.0	76.9
24	96.5	96.5	78.2	78.3	76.4	77.1	75.3	76.2	76.4	77.2	76.2	75.4
25	77.4	77.4	144.5	144.5	76.8	76.9	73.1	72.9	76.8	76.8	72.5	73.0
26	25.2	25.2	113.2	113.2	21.6	22.5	26.4 ^d	26.3 ^d	22.4	22.8	26.2	26.3 ^d
27	23.5	23.5	18.2	18.2	20.1	20.1	26.5 ^d	26.4 ^d	20.7	20.6	27.1	26.4 ^d
28	28.1	28.0	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6	27.6
29	22.0	22.2	21.7	21.8	21.8	21.8	21.8	21.8	21.8	21.8	21.8	21.7
30	27.9	28.6	27.8	27.8	27.8	27.9	27.9	27.9	27.8	27.8	28.0	27.8
OAc	172.5, 21.2 ^d ;	172.7, 21.2	170.9, 21.4	170.1, 21.4	170.9, 21.5	170.9, 21.5	171.0, 21.5	171.0, 21.5	171.1, 21.5	170.9, 21.4	170.9, 21.5	171.0, 21.5
	172.0, 21.1 ^d											
OMe			55.4		55.4; 49.2	54.9; 49.3			55.5	54.8		55.6
OEt				63.7, 15.4			64.1; 15.4	63.8; 14.2	56.5 16.1	56.6 16.2		

- ^a Measured at 125 MHz in CD₃OD.
- ^b Measured at 125 MHz in CDCl₃.
- ^c Literature data, see Ref. 7.
- ^d Maybe exchanged in the same column.

Figure 3. Key HMBC $(H\rightarrow C)$ correlations of compounds 1, 3, and 11.

substituents. A comparison of the NMR data of $\bf 3$ with those of chisiamols D^8 ($\bf 12$) (Tables 1 and 2) indicated that $\bf 3$ was an analogue of $\bf 12$, an *apo*-tirucallol protolimonoid. Further analysis suggested that the two compounds shared the same tetracyclic core with

one alkenyl at C-14 and one acetoxyl at C-3, but differed in the side chain. In the HMBC spectrum of **3** (Fig. 3), correlations of C-23/H-21 and C-21/OMe demonstrated the existence of the ether bridge between C-21 and C-23 to form a tetrahydrofuran ring and the location of a methoxyl at C-21 to form an acetal group. The HMBC correlations from two protons of the terminal double bond ($\delta_{\rm H}$ 4.99, 4.89, each 1H, br s) to C-24 ($\delta_{\rm C}$ 78.2) and C-27 ($\delta_{\rm C}$ 18.2) revealed the existence of a double bond between C-25 and C-26 in **3**.

The relative configuration of the tetracyclic core in 3 was assigned by a ROESY experiment (Fig. 4), which was identical to that of 12. The small coupling constants and NOE correlations of H-3/Me-29 and H-7/Me-30 also indicated a β-orientation for H-3 and H-7. When compound 3 was treated with boron trifluoride diethyl etherate in CHCl₃, compound **3a** (Fig. 2) was produced. In the ROESY spectrum of 3a (Fig. 4), correlations were detected between H-21/H-17, H-21/H-12a, H₃-18/H-20, and H₃-18/H-21, which was possible only when **3a** had the 20S configuration.² The NOE correlations between H-23/H-17, H-23/H-24, MeO-21/H-24, H-22b/H-23 and H-22b/H-24 showed that the configurations at C-23 and C-24 were both in R. Moreover, in the ROESY spectrum of **3**, cross peaks between H-21/ H-17, MeO-21/H-23 and MeO-21/H-20 revealed the R configuration of C-21 since the 20S configuration was determined. Therefore, compound **3** was concluded to be 3α -acetoxyl-21*R*-methoxyl-17 α -20*S*-21,23*R*-epoxyapotirucall-14,25-dien-7 α ,24*R*-diol.

Chisopanin C (**4**) gave a molecular formula of $C_{34}H_{54}O_6$ as established by HRESIMS, exhibiting a quasi-molecular ion at m/z 581.3842 [M+Na]⁺ (calcd for $C_{34}H_{54}O_6$ Na, 581.3813). Comparison

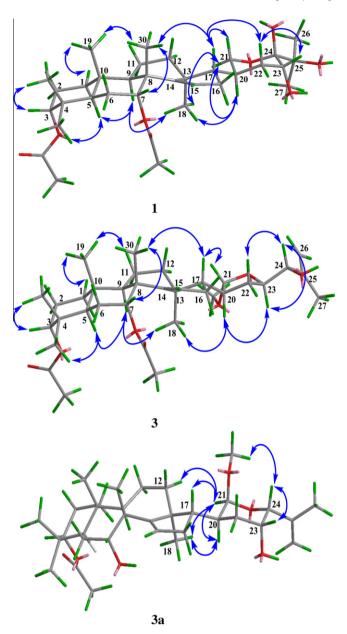


Figure 4. Selected NOESY correlations of compounds 1, 3, and 3a.

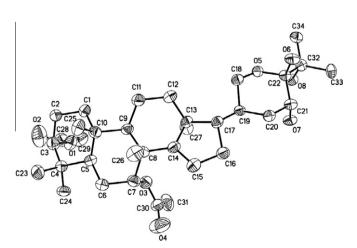


Figure 5. X-ray crystallographic structure of 1.

of its NMR data with **3** revealed that they share the same carbon skeleton. The difference was the appearance of an ethoxyl rather than a methoxyl at C-21, which was demonstrated by the HMBC correlations from the ethoxylic methylene ($\delta_{\rm C}$ 63.7) to the ethoxylic methyl ($\delta_{\rm H}$ 1.22, 3H, t, 7.1), and to H-21 ($\delta_{\rm H}$ 4.93, d, 3.6). The ROESY cross-peaks of H-24/H-22 and H-24/H-23 and the small coupling constant ($J_{23,24}$ = 2.5 Hz) revealed the 24*R* configuration. ¹² 2D NMR experiments, including HSQC, HMBC, and ROESY spectra, further confirmed the structure of **4**. Consequently, compound **4** was assigned as 3α -acetoxyl-21*R*-ethoxyl-17 α -20S-21,23*R*-epoxyapotirucall-14,25-dien-7 α ,24*R*-diol.

Chisopanins E (5) and F (6) with the same molecular formula of $C_{34}H_{56}O_7$ (at m/z 599.3923 [M+Na]⁺ and 599.3917 [M+Na]⁺, respectively) as determined by HRESIMS showed the presence of one more CH2 unit than that of 12. Their NMR spectra consisted of signals similar to those of 12 except the presence of an additional methoxyl [δ_H 3.23 (3H, s) for **5**; 3.25 (3H, s) for **6**]. The downfield shift of C-25 from δ_C 72.9 to δ_C 76.8 in **5** and to δ_C 76.9 in **6** when compared with 12 suggested the attachment of a methoxy group to C-25, which was confirmed by the HMBC correlation from methoxy group to C-25. NOE correlations of H-21/H-17, H-24/H-22 and H-24/H-23 and the small coupling constant of H-23/H-24 were also found in 5 to affirm the 21R and 24S configurations. Thus, compound **5** was characterized as 3α-acetoxyl-21R,25-dimethoxyl-17 α -20S-21,23R-epoxyapotirucall-14-ene-7 α ,24S-diol. observed upfield shifts of C-21 ($\Delta\delta$ 4.7) and C-17 ($\Delta\delta$ 5.2) in **6** implied that it was the 21S epimer of 5, 12 which was further confirmed by the NOE correlations of H-21/Me-18 and H-21/H-20. Therefore, compound **6** was determined to be 3α -acetoxyl-21S,25dimethoxyl-17 α -20S-21,23R-epoxyapotirucall-14-ene-7 α ,24S-diol.

Chisopanin G (7) and chisopanin H (8) displayed quasi-molecular ion at m/z 599.3936 [M+Na]⁺ and 599.3889 [M+Na]⁺, respectively, in positive-ion HRESIMS, corresponding to the same molecular formula of $C_{34}H_{56}O_7$ as ${\bf 5}$ and ${\bf 6}$. Their NMR spectroscopic data (Tables 1 and 2) were generally similar to those of 12 except for the presence of an ethoxy group, which was placed at C-21 by correlations of ethoxylic methylene proton signals with the acetal carbon signals in their HMBC spectrum. The observed NOE correlation between H-21 ($\delta_{\rm H}$ 4.90, d, 4.2) and H-17 ($\delta_{\rm H}$ 1.72, m) in **7** implied the 21R configuration, while 8 had the C-21S configuration, based on the same elucidation process in 6. By detailed analysis of 2D NMR experiments, including HSQC, HMBC, and ROESY spectra, compound 7 was then determined as 3α -acetoxyl-21*R*-ethoxyl- 17α -20S-21,23R-epoxyapotirucall-14-ene- 7α ,24S,25-trisol, and compound 8 was elucidated as 3α -acetoxyl-21S-ethoxyl-17 α -20S-21,23R-epoxyapotirucall-14-ene-7 α ,24S,25-trisol.

Chisopanin I (**9**) and chisopanin J (**10**) were also stereo isomers, as deduced by the same molecular formula of $C_{35}H_{58}O_7$ and their similar NMR spectra, which were closely related to those of **5** and **6** except the presence of an ethoxy group instead of a methoxyl. Since HMBC correlations from ethoxylic methylene protons to C-25 were both observed in **9** and **10**, the ethoxy group was assigned at C-25. The configurations at C-21, C-23 and C-24 of **9** were determined to be R, R and S, respectively, by acid-catalyzed formation of **9a** (Fig. 2). Therefore, compound **9** was assigned as 3α -acetoxyl-21R-methoxyl-25-ethoxyl-17 α -20S-21,23R-epoxyapotirucall-14-ene- 7α ,24S-diol. Similarly to **6**, the NOE correlations of H-21/Me-18, along with the upfield shifts of C-17 and C-21, revealed the C-21S configuration in **10**. Thus, the structure of **10** was determined as 3α -acetoxyl-21S-methoxyl-25-ethoxyl-17 α -20S-21,23R-epoxyapotirucall-14-ene- 7α ,24S-diol.

Chisopanin K (11) had the molecular formula $C_{32}H_{48}O_7$ as established by HRESIMS at m/z 567.3277 [M+Na]⁺ (calcd for $C_{32}H_{48}O_7$ Na, 567.3292), indicating nine degrees of unsaturation. The NMR data of 11 (Tables 1 and 2) indicated that it was similar to those compounds above, however, with difference in ring E: the absence of signals due

to the tetrahydrofuran ring and hemiacetal group and, instead, the appearance of those for an α,β -unsaturated- γ -lactone ring 13 [δ_H 5.22 (1H, s), and 7.17 (1H, s); δ_C 81.0, 134.3, 148.9, and 173.3]. Furthermore, in its HMBC experiment (Fig. 3), the correlations were observed from the proton at H-22 (δ_H 7.17, s) to C-21 (δ_C 173.3), C-23 (δ_C 81.0), and C-17 (δ_C 50.8), and from the proton at H-23 (δ_H 5.22, s) to C-21 (δ_C 173.3), C-22 (δ_C 148.9), and C-24 (δ_C 76.2), which established unequivocally the existence of the unsaturated lactone ring in **11**. The structure of **11** was further confirmed by 2D NMR experiments, and determined to be 3 α -acetoxyl-7 α ,24,25-trihydroxy-17 α -apotirucall-14,20(22)-dien-21,23-olide.

The hemiketal tetrahydropyrane ring at C-17 described in compounds **1** and **2** was uncommon and rarely reported in protolimonoids. ^{11,14,15} When measured in different solvents, protolimonoids possessing this unusual structure had an interesting NMR phenomenon due to the existence of an equilibrium system: ¹¹ when recorded in CDCl₃, their ¹H and ¹³C NMR spectra seemed like mixtures with many unassignable signals, which disappeared when measured in CD₃OD.

By comparison of the NMR and MS data with the published data, 13 known compounds were identified as chisiamol D (12),8 chisiamol E (13),8 3-O-acetyl-21-O-methyltoosendanpentol (14),16 21α -methylmelianodiol (15),5 21β -methylmelianodiol (16),5 21β -melianodiol (17),17 21α ,25-dimethylmelianodiol (18),18 [21- α -methylmelianol (21R,23R)-epoxy-23-hydroxy-21 α -methoxyl]triucalla-7,25-dien-3-one (19),19 chisiamol C (20),8 chisiamol B (21),8 3α -acetoxyl-21,24R-epoxyapotirucall-14-ene-7 α ,23R,25-triol (22),20 bourjotinoline A (23),21 paniculatin C (24).22

2.2. Anti-inflammatory activities

2.2.1. Determination of anti-inflammation—Carrageenan-edema test

Carrageenan-induced paw edema is highly sensitive to non-steroid anti-inflammatory drugs. Edema, one of the cardinal signs of inflammation, is an important parameter to be considered when evaluating drugs for their potential anti-inflammatory activity.²³ As shown in Fig. 1, the results indicated that the crude and the CHCl₃-soluble extracts of *C. paniculatus* significantly inhibited the mouse paw edema induced by carrageenan in a dose-dependent manner, while the EtOAc-soluble extract didn't. 5 h after edema induction, groups treated with CHCl₃-soluble extract at 100 and 200 mg/kg significantly suppressed edema formation with inhibitory rates at 21.9% and 25.3%, respectively.

2.2.2. Compounds reduced NO and TNF- α production from macrophages

Macrophages play a central role in the inflammatory response, and activated macrophages release a variety of inflammatory mediators. NO and TNF- α are key mediators in the early and late phases of carrageenan-induced paw inflammation. ^{24,25} Therefore, 11 new (1–11) and seven primary known (12–15 and 20–22) protolimonoids with amount over 10 mg were evaluated for their inhibitory activities on lipopolysaccharide-stimulated inflammation factor-release (NO and TNF- α) of mouse macrophages RAW 264.7 in vitro.

As shown in Table 3, all protolimonoids, except **4**, **8**, and **22**, inhibited LPS-stimulated NO expression to various degrees. Nine compounds (**1**, **2**, **5–7**, **9**, **12**, **13**, and **20**) exhibited the striking inhibitory abilities with IC₅₀ value lower than 10 μ M, and compounds **10**, **14** and **21** showed moderate inhibitory effects with IC₅₀ values of 12.3, 18.2 and 16.5 μ M, respectively. Interestingly, concluding from the three pairs of epimers (**5/6**, **7/8**, and **9/10**), protolimonoids bearing 21*R* tetrahydrofuran ring worked better than the 21*S* epimers. Terminal double bonds at C-25 in compounds **3** and **4** reduced inhibitory activities comparing with other

Table 3 Effects of different compounds on NO and TNF- α production in LPS-stimulated RAW 264.7 cells (n = 4)^a

Compounds	IC ₅₀ (μM)			
	NO	TNF-α		
Chisopanin A (1)	5.4 ± 0.2	26.9 ± 1.5		
Chisopanin B (2)	7.9 ± 0.4	30.7 ± 1.7		
Chisopanin C (3)	40.0 ± 2.7	>100		
Chisopanin D (4)	>50	>100		
Chisopanin E (5)	6.2 ± 0.3	>100		
Chisopanin F (6)	6.9 ± 0.5	>100		
Chisopanin G (7)	5.4 ± 0.2	>100		
Chisopanin H (8)	>50	>100		
Chisopanin I (9)	5.3 ± 0.2	>100		
Chisopanin J (10)	12.3 ± 0.5	>100		
Chisopanin K (11)	33.4 ± 2.1	47.4 ± 3.3		
Chisiamols D (12)	6.5 ± 0.3	>100		
Chisiamols E (13)	8.9 ± 0.5	>100		
3-O-acetyl-21-O-methyltoosendanpentol (14)	18.2 ± 1.2	57.5 ± 10.8		
21α-Methylmelianodiol (15)	29.4 ± 3.2	54.6 ± 7.2		
Chisiamols C (20)	8.7 ± 0.5	>100		
Chisiamols B (21)	16.5 ± 1.1	>100		
Chisiamol B (22)	>50	73.5 ± 4.3		
Dexamethasone ^b	0.86 ± 0.06			
Genistein ^b		19.1 ± 0.4		

 $[^]a$ A compound was regarded as inactive when IC50 >50 μM for NO, and IC50 >100 μM for TNF- α

analogues. Meanwhile, compounds **1** and **2** with characteristic sixmembered hemiacetal also significantly inhibited LPS-induced TNF- α release in RAW 264.7 macrophages (IC₅₀ at 26.9 and 30.7 μ M), superior to **22**, which revealed that the hemiketal formation at C-24 and the presence of hydroxyl group could obviously improve their anti-inflammatory activities. In addition, compounds **11**, **14**, **15** and **22** displayed temperate activities in inhibition of LPS-induced TNF- α expression with IC₅₀ values range from 45 to 75 μ M.

3. Conclusion

Based on initial Carrageenan-induced paw edema test of crude extracts, further fractionation on active CHCl₃-soluble extract has led to the discovery of 11 new (1–11) and 13 known (12–24) protolimonoids from *C. paniculatus*. Most of the tested protolimonoids showed inhibitory activities on LPS-stimulated inflammation factor-release (NO and TNF- α) of RAW 264.7 in vitro in various degrees with chisopanins A and B (1 and 2) being the most potent. Thus, we believe that protolimonoids are important anti-inflammatory constituents of *C. paniculatus*, and could be considered as a new class of triterpenoids that can be potential therapeutic drug against inflammation.

4. Experimental

4.1. General procedures

The melting point was recorded on an XT-4 micromelting point apparatus, uncorrected. Optical rotations were measured using a JASCO P-1020 polarimeter. IR (KBr disks) spectra were measured on a Bruker Tensor-27 spectrophotometer. NMR spectra were recorded on Bruker ACF-500 instrument (1 H: 500 MHz, 13 C: 125 MHz) using standard Bruker pulse programs. Chemical shifts are given as δ -value with reference to tetramethylsilane (TMS) as an internal standard. Mass spectra were obtained on an Agilent Micro Q-TOF mass spectrometer. Silica gel (Qingdao Marine Chemical Co. Ltd), Sephadex LH-20 (Amersham Pharmacia Biotech AB, Uppsala, Sweden), C_{18} reverse-phased silica gel (150–200 µm, Merck),

^b Positive controls.

and MCI gel (CHP20P, 75–150 μ m, Mitsubishi Chemical Industries Ltd) were used for column chromatography. Silica gel GF₂₅₄ plates (Qingdao Marine Chemical Co. Ltd) were used for thin-layer chromatography, and spots were visualized by spraying with 10% H₂SO₄ followed by heating. Preparative HPLC was performed using Agilent 1100 series instrument with a Shim-Park RP-C₁₈ column (200 \times 20 mm i.d.).

4.2. Plant material

The twigs of *C. paniculatus* were collected in Xishuangbanna, Yunnan Province, China, in May 2007. The botanical identification was made by Prof. Min-jian Qin, Department of Medicinal Plants, China Pharmaceutical University. A voucher specimen (No. 070705) is deposited in the Department of Natural Medicinal Chemistry, China Pharmaceutical University.

4.3. Extraction and isolation

The air-dried twigs of C. paniculatus (30 kg) were crushed to pieces and extracted with 95% EtOH under reflux for 3×3 h. After concentration of the solution, the obtained dark crude extract (CPA, 1.5 kg), which was suspended in water, was partitioned with CHCl₃ $(6 \times 2 \text{ L})$ and EtOAc $(6 \times 2 \text{ L})$ to afford CHCl₃ layer (CPC, 300 g) and EtOAc layer (CPE, 205 g). The CHCl₃ extract was separated into 10 fractions (CS1-CS10) by chromatography on a silica gel column eluted with gradient PE/EtOAc (100:0 to 1:1). Fraction CS2 (11 g) was separated on a silica gel column chromatography using PE/EtOAc (100:1 to 2:1) to mainly afford three fractions, 2A-2C. Separation of fraction 2A on a reversed-phase C₁₈ open column eluted with MeOH/H2O (70:30 to 100:0) yielded 4 (75 mg) and **10** (82 mg). Purification of the fraction 2B by a C_{18} column chromatography with MeOH/H₂O (70:30 to 100:0) and followed by preparative HPLC (MeCN/H₂O, 85:15) afforded **3** (80 mg), **6** (13 mg), and 9 (70 mg). Purification of the fraction 2C by repeated preparative HPLC (MeCN/H₂O, 80:20) led to the isolation of **16** (4 mg). Fraction CS3 (9 g) was subjected to silica gel column chromatography using PE/EtOAc (50:1 to 2:1) as step gradient mixtures as eluents to afford four fractions (3A-3D). Purification of the fraction 3B by MCI gel with MeOH/H₂O (70:30 to 100:0) and further preparation by HPLC (MeCN/H₂O, 85:15) afforded **5** (8 mg) and **7** (21 mg). By the same ways, 8 (40 mg) and 21 (20 mg) were obtained from fraction 3D. Fraction CS4 (3 g) was chromatographed on a RP-18 column and eluted with MeOH and H₂O (70:30 to 100:0) to give white crude powder, which was further purified by silica gel column to afford 23 (200 mg). The remaining fraction CS4 was purified by chromatography over Sephadex LH-20 and then separated on a silica gel column to afford 17 (3 mg) and 18 (5 mg). Separation of fraction CS5 (12 g) was column chromatographed on MCI gel and further isolated by RP-18 column to obtain four fractions (5A-5D). Recrystallization of fraction 5B with MeOH and CHCl₃ afforded 1 (60 mg). Separation of fraction 5C on ODS column chromatography with MeOH/H₂O (60:00 to 100:0), followed by preparative HPLC (MeCN/H2O, 80:20) led to the isolation of 11 (20 mg). By the same ways, 15 (16 mg) was obtained from fraction 5D. Fraction CS6 (26 g) was subjected to chromatography over silica gel (CHCl₃/MeOH, 200:1 to 50:1) and ODS (MeOH/H₂O 60:40 to 100:0) to afford fractions 6A-6E. By repeated preparative HPLC (MeCN/H₂O, 75:15 and/or MeOH/H₂O, 80:20), **19** (6 mg), **20** (3 mg), and **22** (110 mg) were obtained from fraction 6B. Similarly, 24 (6 mg) was isolated from fraction 6C, while 2 (18 mg), 13 (50 mg), and 14 (12 mg) were from fraction 6E.

Chisopanin A (1): colorless crystals (MeOH/CHCl₃); mp 152–155 °C; $[\alpha]_0^{27}$ –81.5 (c 0.30, CHCl₃); IR (KBr) $\nu_{\rm max}$ 3451, 2947, 1730, 1640, 1379, 1249, 1038 cm⁻¹; ¹H NMR see Table 1 and ¹³C

NMR see Table 2; positive HRESIMS m/z found 613.3731 [M+Na]⁺ (calcd for $C_{34}H_{54}O_8Na$, 613.3711).

Chisopanin B (**2**): white, amorphous powder; $[\alpha]_0^{27}$ -65.6 (c 0.14, CHCl₃); IR (KBr) $\nu_{\rm max}$ 3450, 2942, 1711, 1640, 1377, 1249, 1030 cm⁻¹; ¹H NMR see Table 1 and ¹³C NMR see Table 2; positive HRESIMS m/z found 571.3591 [M+Na]⁺ (calcd for $C_{32}H_{52}O_7Na$, 571.3605).

Chisopanin C (**3**): white, amorphous powder; $[\alpha]_D^{27}$ –109.4 (c 0.32, CHCl₃); IR (KBr) ν_{max} 3457, 2942, 1727, 1641, 1376, 1248, 1034 cm⁻¹; ¹H NMR see Table 1 and ¹³C NMR see Table 2; positive HRESIMS m/z found 567.3668 [M+Na]⁺ (calcd for C₃₃H₅₂O₆Na, 567.3656).

Chisopanin D (**4**): white, amorphous powder; $[\alpha]_D^{27} - 70.4$ (c 0.18, CHCl₃); IR (KBr) v_{max} 3455, 2973, 1724, 1641, 1378, 1247 cm⁻¹; ¹H NMR see Table 1 and ¹³C NMR see Table 2; positive HRESIMS m/z found 581.3842 [M+Na]⁺ (calcd for C₃₄H₅₄O₆Na, 581.3813).

Chisopanin E (**5**): white, amorphous powder; $[\alpha]_D^{27}$ –105.6 (c 0.14, CHCl₃); IR (KBr) $\nu_{\rm max}$ 3536, 3460, 2956, 2936, 1725, 1640, 1382, 1270, 1034 cm⁻¹; ¹H NMR see Table 1 and ¹³C NMR see Table 2; positive HRESIMS m/z found 599.3923 [M+Na]* (calcd for $C_{34}H_{56}O_7$ Na, 599.3918).

Chisopanin F (**6**): white, amorphous powder; $[\alpha]_D^{27}$ –68.5 (*c* 0.12, CHCl₃); IR (KBr) ν_{max} 3457, 2943, 1731, 1641, 1464, 1250, 1034 cm⁻¹; ¹H NMR see Table 1 and ¹³C NMR see Table 2; positive HRESIMS m/z found 599.3917 [M+Na]⁺ (calcd for C₃₄H₅₆O₇Na, 599.3918).

Chisopanin G (7): white, amorphous powder; $[\alpha]_D^{27}$ –159.4 (c 0.16, CHCl₃); IR (KBr) $v_{\rm max}$ 3536, 3455, 2973, 2936, 1725, 1641, 1461, 1372, 1270 cm⁻¹; ¹H NMR see Table 1 and ¹³C NMR see Table 2; positive HRESIMS m/z found 599.3936 [M+Na]⁺ (calcd for C₃₄H₅₆O₇Na, 599.3918).

Chisopanin H (**8**): white, amorphous powder; $[\alpha]_D^{27}$ –66.5 (*c* 0.13, CHCl₃); IR (KBr) ν_{max} 3453, 2972, 2940, 1710, 1641, 1462, 1386, 1249, 1033 cm⁻¹; ¹H NMR see Table 1 and ¹³C NMR see Table 2; positive HRESIMS m/z found 599.3889 [M+Na]⁺ (calcd for $C_{34}H_{56}O_7$ Na, 599.3918).

Chisopanin I (**9**): white, amorphous powder; $[\alpha]_D^{27}$ –118.3 (*c* 0.45, CHCl₃); IR (KBr) ν_{max} 3456, 2975, 2940, 1727, 1639, 1388, 1247, 1035 cm⁻¹; ¹H NMR see Table 1 and ¹³C NMR see Table 2; positive HRESIMS m/z found 613.4036 [M+Na]⁺ (calcd for C₃₅H₅₈O₇Na, 613.4075.

Chisopanin J (**10**): white, amorphous powder; $[\alpha]_D^{27} - 50.3$ (c 0.21, CHCl₃); IR (KBr) $\nu_{\rm max}$ 3462, 2975, 2941, 1729, 1641, 1462, 1388, 1248 cm⁻¹; ¹H NMR see Table 1 and ¹³C NMR see Table 2; positive HRESIMS m/z found 613.4066 [M+Na]⁺ (calcd for $C_{35}H_{58}O_7$ Na, 613.4075).

Chisopanin K (**11**): white, amorphous powder; $[\alpha]_0^{27}$ –48.0 (c 0.05, CHCl₃); IR (KBr) $v_{\rm max}$ 3460, 1741, 1643, 1386, 1252, 1101 cm⁻¹; ¹H NMR see Table 1 and ¹³C NMR see Table 2; positive HRESIMS m/z found 567.3277 [M+Na]* (calcd for C₃₂H₄₈O₇Na, 567.3292).

4.4. Treatment of 3 and 9 with boron trifluoride diethyl etherate

Compound **3** (20 mg) in CHCl₃ (4 mL) mixed with boron trifluoride diethyl etherate (3 μ L) were stirred at room temperature for 30 min. The mixture was diluted with 5 mL CHCl₃, and then washed with H₂O and brine respectively. After concentration, the residue was subjected to preparative HPLC (MeCN/H₂O, 85:15) to afford **3a** (2.4 mg).

Compound **3a**: white, amorphous powders. The complete assignments of 1 H and 13 C NMR of **3a** were achieved by a comprehensive analysis of 2D NMR spectra. 1 H NMR (CDCl₃, 500 MHz) δ : 5.47 (1H, br s, H-15), 5.04 (1H, br s, H-26a), 4.92 (1H, br s, H-26b), 4.77 (1H, d, J = 4.3 Hz, H-21), 4.66 (1H, t, J = 2.8 Hz, H-3),

4.22 (1H, m, H-23), 3.92 (1H, t, I = 2.8 Hz, H-7), 3.82 (1H, d, I = 5.1 Hz, H-24), 3.36 (3H, s, OMe), 2.27 (1H, m, H-20), 2.18 (2H, m, H-16), 2.10 (3H, s, -CH₃ OAc), 2.05 (1H, m, H-5), 2.02 (1H, m, H-17), 2.00 (1H, m, H-9), 1.94 (1H, m, H-2a), 1.92 (1H, m, H-22a), 1.80 (3H, s, Me-27), 1.78 (2H, m, H-6), 1.75 (1H, m, H-22b), 1.72 (1H, m, H-11a), 1.64 (1H, m, H-12a), 1.55 (1H, m, H-11b), 1.54 (1H, m, H-12b), 1.52 (1H, m, H-2b), 1.38 (1H, m, H-1a), 1.27 (1H, m, H-1b), 1.09 (3H, s, Me-30), 1.07 (3H, s, Me-18), 0.96 (3H, s, Me-19), 0.94 (3H, s, Me-29), 0.88 (3H, s, Me-28). 13C NMR (CDCl₃, 125 MHz) δ: 170.9 (-C=O, OAc), 162.2 (C-14), 144.8 (C-25), 119.6 (C-15), 112.6 (C-26), 104.5 (C-21), 80.5 (C-23), 78.1 (C-3, C-24), 72.2 (C-7), 54.7 (OMe), 52.6 (C-17), 46.7 (C-13), 45.4 (C-20), 44.5 (C-8), 41.9 (C-9), 41.6 (C-5), 37.7 (C-10), 36.2 (C-4), 34.9 (C-16), 33.3 (C-1), 32.9 (C-12), 30.9 (C-22), 27.9 (C-30), 27.6 (C-28), 23.7 (C-6), 22.8 (C-2), 21.8 (C-29), 21.5 (-CH₃, OAc), 19.9 (C-18), 18.4 (C-27), 16.4 (C-11), 15.1 (C-19),

Compound **9** (30 mg) was treated with boron trifluoride diethyl etherate (3 μ L) in the same manner as described for **3** to give **9a** (3.1 mg).

Compound 9a: white, amorphous powder. The complete assignments of ¹H and ¹³C NMR of **9a** were achieved by a comprehensive analysis of 2D NMR spectra. ¹H NMR (CDCl₃, 500 MHz) δ : 5.46 (1H, br s, H-15), 4.85 (1H, d, I = 3.0 Hz, H-21), 4.67 (1H, s, H-3), 4.19 (1H, s, H-23), 3.92 (1H, t, I = 2.8 Hz, H-7), 3.59 (2H, m, -CH₂-, OEt), 3.35 (3H, s, OMe), 3.33 (1H, br s, H-24), 2.43 (1H, m, H-20), 2.18 (1H, m, H-16a), 2.10 (1H, m, H-16b), 2.09 (3H, s, -CH₃ OAc), 2.01 (1H, m, H-5), 2.00 (1H, m, H-9), 1.89 (1H, m, H-2a), 1.78 (1H, m, H-17), 1.73 (2H, m, H-6, H-22a), 1.71 (1H, m, H-11a), 1.69 (1H, m, H-12a), 1.62 (1H, m, H-2b), 1.55 (1H, m, H-22b), 1.54 (1H, m, H-12b), 1.53 (1H, m, H-11b), 1.38 (1H, m, H-1a), 1.37 (3H, s, Me-27), 1.34 (3H, s, Me-26), 1.26 (1H, m, H-1b), 1.23 (3H, t, J = 7.0 Hz, $-CH_3$, OEt), 1.10 (3H, s, Me-18), 1.07 (3H, s, Me-30), 0.92 (3H, s, Me-19), 0.91 (3H, s, Me-29), 0.87 (3H, s, Me-28). ¹³C NMR (CDCl₃, 125 MHz) δ: 171.0 (-C=O, OAc), 162.2 (C-14), 119.6 (C-15), 100.6 (C-21), 78.6 (C-25), 78.1 (C-3), 74.0 (C-24), 72.2 (C-7), 65.1 (C-23), 57.7 (-CH₂-, OEt), 54.3 (C-17, OMe), 46.7 (C-13), 44.3 (C-8), 41.8 (C-9), 41.5 (C-5), 37.5 (C-10), 36.2 (C-4), 33.8 (C-16), 33.3 (C-1), 33.2 (C-20), 33.1 (C-12), 31.6 (C-22), 27.8 (C-30), 27.6 (C-28), 23.6 (C-6), 23.1 (C-27), 22.8 (C-2), 22.3 (C-26), 21.7 (C-29), 21.4 (-CH₃, OAc), 19.5 (C-18), 16.5 (C-11), 16.0 (-CH₃, OEt), 15.1 (C-19).

4.5. X-ray crystallographic study of 1

Crystal data for **1**: formula $C_{34}H_{54}O_8$; $M_r = 590.77$; orthorhombic crystalline system; space group $P2_12_12_1$; a = 7.3932(14) Å, b = 9.0434(15) Å, c = 26.310(3) Å; V = 1757.5(5) Å³; Z = 2; d = 1.116 mg/m³; crystal dimensions $0.46 \times 0.31 \times 0.12$ mm³; the final indices were $R_1 = 0.0940$ $wR_2 = 0.1870$.

Crystal data were obtained on a Bruker Smart-1000 CCD with a graphite monochromator with Mo K α radiation at (λ = 0.71073 Å) 298(2) K. The structure was determined by direct methods using SHELX-97²⁶ and expanded using difference Fourier techniques, refined by SHELX-97.²⁷ CCDC-802253 contains the supplementary crystallographic data for this paper. Copies of the data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK [fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk].

4.6. Anti-inflammatory activities

4.6.1. Carrageenan-edema test

Male Kunming mice, weighing about 25–30 g, were randomly divided into several groups. Two concentrations (100 and 200 mg/kg) of *C. paniculatus* crude extracts (CPA, CPC, and CPE),

dissolved in polyethylene glycol (PEG), were orally given for 5 days continuously. The same volume of PEG (15 mL/kg, i.g.) was administered to the control group of mice. One hour after carrageenan (Sigma) (1% 50 μ L) was injected into the planar surface of left hind paw, the swelling of the foot was measured by a plethysmometer (YLS-7B, Beijing, China). The changes in the volume of the foot were detected every hour for 5 h. The percent increase of paw volume was calculated based on the volume of the paw before carrageenan injection. These animal studies were approved by the Animal Ethics Committee of China Pharmaceutical University.

4.6.2. Cell culture

Mouse macrophage cell line (RAW 264.7) was obtained from the Chinese Academy of Science Cell Bank (Shanghai, China). The cells were cultured in RPMI 1640 medium (Gibco) supplemented with 10% heated-deactivated fetal bovine serum (FBS), penicillin (100 U/ml), and streptomycin (15 μ M) at 37 °C atmosphere and 5% CO₂.

4.6.3. Nitrite assay

RAW 264.7 cells were placed in 24-well cell culture plates at a density of 1×10^5 with 500 μL culture medium, and incubated for 24 h. The cells were pre-treated with different compounds (40, 20, 10, 5, 2.5 $\mu M)$ for 2 h, which were solubilized with DMSO diluted with RPMI 1640 medium, and then stimulated with lipopolysaccharide (LPS) (Sigma) (2 $\mu g/m L)$ for 18 h. The final concentration of DMSO should not exceed 0.1% in the culture medium. After incubation, the supernatants (100 $\mu L)$ were added to a solution of 100 μL Griess reagent (1% sulfanilamide and 0.1% naphthyl ethylene diamine dihydrochloride in 5% $H_3 PO_4)$. Using NaNO2 to generate a standard curve, nitrite production was measured by a miciroplate reader (IQuantTM, BIO-TEK Instrument Inc., Winooski, VT) at 540 nm.

4.6.4. Pro-inflammatory cytokines (TNF- α) production

Before stimulation with LPS and test materials, RAW 264.7 cells were incubated for 24 h in 24-well plates under the same conditions. The test compounds (100, 50, 25, 12.5, 6.25 μ M) and LPS were then added to the cultured cells as described in Section 4.6.3. The medium was used for TNF- α assay using mouse ELISA kit (R&D Systems Inc., MN, USA), according to the manufacturer's recommendations.

4.6.5. Statistical analysis

Results were expressed as mean \pm SD and all statistical comparisons were made by means of a one-way ANOVA test followed by Dunett's t-test. A value of P <0.05 was considered significant.

Acknowledgments

This research work was supported by the Key Project of National Natural Science Foundation of China (No. 30830116) and the Scaling Project for Innovation Scholars, Natural Science Foundation of Jiangsu Province, China (No. BK2008039).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmc.2011.01.007. These data include MOL files and InChiKeys of the most important compounds described in this article.

References and notes

 Taylor, D. A. H. In Progress in the Chemistry of Organic Natural Products; Herz, W., Grisebach, H., Kirby, G. W., Eds.; Springer: New York, 1984; Vol. 45, pp 1–102.

- Mitsui, K.; Maejima, M.; Saito, H.; Fukaya, H.; Hitotsuyanagi, Y.; Takeya, K. Tetrahedron 2005, 61, 10569.
- 3. Zeng, L.; Gu, Z. M.; Fanwick, P. E.; Chang, C. J.; Smith, D. L.; McLaughlin, J. L. Heterocycles 1995, 41, 741.
- Rogers, L. L.; Zeng, L.; Kozlowski, J. F.; Shimada, H.; Alali, F. Q.; Johnson, H. A.; McLaughlin, J. L. J. Nat. Prod. 1998, 61, 64.
- Zhou, H. Y.; Shin, E. M.; Guo, L. Y.; Zou, L. B.; Xu, G. H.; Lee, S. H.; Ze, K. R.; Kim, E. K.; Kang, S. S.; Kim, Y. S. Eur. J. Pharmacol. 2007, 572, 239.
- Lee, I. J.; Xu, G. H.; Ju, J. H.; Kim, J. A.; Kwon, S. W.; Lee, S. H.; Han, S. B.; Kim, Y. Planta Med. 2008, 74, 396.
- Rahman, A. In Studies in Natural Products Chemistry; Rios, J. L., Recio, M. C., Manez, S., Giner, R. M., Eds.; Elsevier: Amsterdam, 2000; Vol. 22, pp 93–143.
- Manez, S., Giner, R. M., Eds.; Elsevier: Amsterdam, 2000; Vol. 22, pp 93–143 8. Xie, B. J.; Yang, S. P.; Zhang, C.; Yue, J. M. Chin. J. Chem. **2009**, 27, 1805.
- Chatterjee, A.; Nayak, L.; Das, B.; Patra, A.; Dhara, K. P.; Mukherjee, K.; Banerji, J. Indian J. Chem., Sect. B 1989, 28, 231.
- Yang, M. H.; Wang, J. S.; Luo, J. G.; Wang, X. B.; Kong, L. Y. J. Nat. Prod. 2009, 72, 2014.
- 11. Luo, X. D.; Wu, S. H.; Wu, D. G.; Ma, Y. B.; Qi, S. H. Tetrahedron 2002, 58, 6691.
- 12. Xie, B. J.; Yang, S. P.; Chen, H. D.; Yue, J. M. J. Nat. Prod. 2007, 70, 1532.
- 13. Fo, E. R.; Fernandes, J. B.; Vieira, P. C.; da Silva, M. F. d. G. F.; Zukerman-Schpector, J.; de Lima, R. M. O. C.; Nascimento, S. C.; Thomas, W. *Phytochemistry* **1996**, 43, 857.
- Zeng, L.; Gu, Z. M.; Fang, X. P.; Fanwick, P. E.; Chang, C. J.; Smith, D. L.; Mclaughlin, J. L. *Tetrahedron* 1995, 51, 2477.

- Garcez, F. R.; Garcez, W. S.; Rodrigues, E. D.; Pott, V. J.; Roque, N. F. Phytochemistry 1996, 42, 1399.
- Mitshi, K.; Saito, H.; Yamamura, R.; Fukaya, H.; Hitotsuyanagi, Y.; Takeya, K. Chem. Pharm. Bull. 2007, 55, 1442.
- Puripattanavong, J.; Weber, S.; Brecht, V.; Frahm, A. W. Planta Med. 2000, 66, 740
- Biavatti, M. W.; Vieira, P. C.; da Silva, M. F.; Fernandes, J. B.; Albuquerque, S. J. Nat. Prad. 2002, 65, 562.
- 19. Yan, C.; Wang, Y.; Du, H.; Hao, X. J. Chin. J. Chem. 2008, 26, 1343.
- Connolly, J. D.; Labbe, C.; Rycroft, D. S.; Taylor, D. A. H. J. Chem. Soc., Perkin trans. 1 1979, 2959.
- 21. Jolad, S. D.; Hoffmann, J. J.; Cole, J. R. J. Org. Chem. 1980, 45, 3132.
- 22. Yadav, R. D.; Kataky, J. C. S.; Mathur, R. K. J. Indian Chem. Soc. 1999, 76, 575.
- 23. Morris, C. J. Methods Mol. Biol. 2003, 225, 115.
- Omote, K.; Hazama, K.; Kawamata, T.; Kawamata, M.; Nakayaka, Y.; Toriyabe, M.; Namiki, A. *Brain Res.* 2001, 912, 171.
- Salvemini, D.; Wang, Z. Q.; Wyatt, P. S.; Bourdon, D. M.; Marino, M. H.; Manning, P. T.; Currie, M. G. Br. J. Pharmacol. 1996, 118, 829.
- Sheldrick, G. M. SHELXS-97: Program for X-ray Crystal Structure Solution; University of Gottingen: Gottingen, Germany, 1997.
- Sheldrick, G. M. SHELXS-97: Program for X-ray Crystal Structure Refinement; University of Gottingen: Gottingen, Germany, 1997.